O ct 2 00 1 Restoration of Angular Lie Algebra Symmetries from a Covariant Hamiltonian

نویسندگان

  • A. Bérard
  • J. Lages
  • H. Mohrbach
چکیده

The sO(3) and the Lorentz algebra symmetries breaking with gauge curvatures a re studied by means of a covariant Hamiltonian. The restoration of these algebra symmetries in flat and curved spaces is performed and led to the apparition of a monopole field. Then in the context of the Lorentz algebra we consider an application to the gravitoelectromagnetism theory. In this last case a qualitative relation giving a mass spectrum for dyons is established.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the $k$-ary ‎M‎oment Map

The moment map is a mathematical expression of the concept of the conservation associated with the symmetries of a Hamiltonian system. The abstract moment map is defined from G-manifold M to dual Lie algebra of G. We will interested study maps from G-manifold M to spaces that are more general than dual Lie algebra of G. These maps help us to reduce the dimension of a manifold much more.

متن کامل

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

New Solutions for Fokker-Plank Equation of‎ ‎Special Stochastic Process via Lie Point Symmetries

‎In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process‎. ‎This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process‎.

متن کامل

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

5 O ct 2 00 8 Conservation Laws and Non - Lie Symmetries

We introduce a method to construct conservation laws for a large class of linear partial differential equations. In contrast to the classical result of Noether, the conserved currents are generated by any symmetry of the operator, including those of the non-Lie type. An explicit example is made of the Dirac equation were we use our construction to find a class of conservation laws associated wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001